1 Math 1 HW \#2

1. Let $f(x)$ be the 2π-periodic extension of the following function

$$
f(x)= \begin{cases}x+1 & \text { if } 0 \leq x<\pi \\ -1 & \text { if } \pi \leq x<2 \pi\end{cases}
$$

(a) As $k \rightarrow \infty$ there is some exponent r such that $c_{k}(f) \sim$ Constant $\times k^{r}$. What is the value of r ?
(b) List all the x-values near which the Fourier series for f fails to converge uniformly. At each of these x-values, calculate the overshoot of the Fourier series.

2. Recall that the 2π-periodic square wave extending

$$
g(x)= \begin{cases}1 & \text { if } 0 \leq x<\pi \\ -1 & \text { if } \pi \leq x<2 \pi\end{cases}
$$

has Fourier coefficients given by

$$
\begin{aligned}
& b_{k}(g)= \begin{cases}\frac{4}{k \pi} & \text { if } k \text { is odd } \\
0 & \text { if } k \text { is even }\end{cases} \\
& a_{k}(g)=0
\end{aligned}
$$

Apply Parseval's identity to the function g to get an exact formula for

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}
$$

3. The heat equation

$$
u_{t}=\alpha u_{x x}
$$

models the flow of heat in a rod. The number $\alpha>0$ is a constant; for this problem, suppose that $\alpha=1 \mathrm{~m}^{2} / \mathrm{s}$. For any number k, the following are solutions to the heat equation:

$$
\sin (k x) e^{-\alpha k^{2} t}, \quad \cos (k x) e^{-\alpha k^{2} t}
$$

The function $u(x, t)$ is the temperature of the rod at position x and time t. Suppose the rod has length 1 meter, and initial temperature given by

$$
u(0, t)= \begin{cases}100^{\circ} C & \text { if } x<.5 \mathrm{~m} \\ 0^{\circ} & \text { if } x \geq .5 \mathrm{~m}\end{cases}
$$

Suppose that the left endpoint of the rod is kept at a constant temperature of $100^{\circ} \mathrm{C}$ and the right endpoint is kept at a constant temperature of $0^{\circ} C$. Give a Fourier series solution for $u(x, t)$.

